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Abstract. We consider the competition between the one dimensionalization effect due to a magnetic field
and the hopping parameters in quasi-one-dimensional conductors. Our study is based on a perturbative
renormalization group method with three cut-off parameters, the bandwidth E0, the 1D-2D crossover
temperature T ∗

1 , which is related to the hopping process t1, and the magnetic energy ωc. We have found
that the renormalized crossover temperatures T ∗

1 and T ∗
2 , at which the respectively hopping processes t1

and t2 become coherent, are reduced compared to the bare values as the field is increased. We discuss
the consequences of these renormalization effects on the temperature-field phase diagram of the organic
conductors.

PACS. 64.60.-i General studies of phase transitions – 75.30.Fv Spin-density waves –
72.15.Gd Galvanomagnetic and other magnetotransport effects – 74.70.Kn Organic superconductors

1 Introduction

The organic compounds (TMTSF)2X and (TMTTF)2X
(noted (TM)2X), where the anion X= PF6, ClO4..., ex-
hibit a one dimensional character due to the anisotropy of
the hopping integrals along the three directions. The esti-
mated values of these integrals along the high conducting
direction (a axis) and the two perpendicular ones (b and
c axes) are in the ratios 100:10:1. Therefore, one can con-
sider these materials as systems of one-dimensional chains
coupled by small interchain hoppings [1]. The latter play
a crucial role in the physics of the (TM)2X compounds
as they span different dimensional regimes. At high tem-
perature, (TM)2X systems behave as isolated 1D chains
which may be described by a Luttinger liquid (Fig. 1).
Indeed, there is a general consensus on the non-Fermi liq-
uid character of the 1D normal state [1,2]. A large number
of experimental and theoretical studies agree with a Lut-
tinger liquid picture at high temperature and proved the
strong character of the electron interactions in these com-
pounds [1–3].

By decreasing the temperature, the interchain hop-
ping becomes coherent and the dimensionality of the
system is raised. Then, the system may, either under-
goes a dimensional crossover from a Luttinger liquid to
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Fig. 1. The generic phase diagram of the (TM)2X as a function
of pressure. LL (FL) denotes Luttinger (Fermi) liquid. The
ordered states SP, AF and SC correspond respectively to the
Spin-Peierls, the Antiferromagnetic and the superconducting
states, after [1].

a 2D (or 3D) Fermi liquid at a critical temperature T ∗
1

or undertakes a phase transition to a long range order
state. At very low temperature, the generic phase dia-
gram of (TM)2X compounds shows various ordered phases
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(Fig. 1). By varying the anisotropy of these systems, the
relative stability of the different phases may be substan-
tially changed. Indeed, applying a magnetic field in the
least conducting direction (c axis), induces a cascade of
phase transitions between Field Induced Spin Density
Wave (FISDW) states, which have been observed in the
Bechgaard salts (TMTSF)2X. These phases are charac-
terized by the quantized Hall resistance ρxy = h/2Ne2 in
the sequence N = ...5, 4, 3, 2, 1, 0 as the field is increased.
This phenomenon is well explained by the Quantized Nest-
ing Model (QNM) [4–6]. According to this model, the or-
bital effect of the magnetic field destabilizes the metallic
state by inducing a sort of Peierls instability to a SDW
phase. This is possible, thanks to a variation of the nest-
ing vector �Q , the longitudinal component of which, Qx is
quantized as Qx = 2kF + NG, where G = ebH/hc is the
magnetic wave vector, b is the interchain distance and H
is the field magnitude.

Below T ∗
1 , nesting properties at zero magnetic field

are based on the electron-hole symmetry relation ε(�k) =
−ε(�k + �Q0) at �Q0 = (2kF , π/b). This relation is vulnera-
ble to small deviations in the dispersion relation ε(�k). Such
deviations are parametrized by the next-nearest-neighbor
interchain hopping t2 along the b direction which is a key
issue in the formation of the FISDW phases. An applied
magnetic field along the c direction may overcome the ef-
fect of t2 by inducing, as we have noted, perfect nesting,
provided the above quantization of Qxis fulfilled. As the
magnetic field is increased, longitudinal nesting conditions
at Qx = 2kF is improved.

Understanding how the t2 hopping process is confined
under a magnetic field is of particular interest for the
physics of the FISDW phases and the high field phase
diagram of the Bechgaard salts.

In this paper we focus on the competition between
the t2 hopping effect and the unidimensionalization of the
electron motion induced by the magnetic field. Within a
perturbative renormalization group approach, we propose
a model to discuss how the t2 parameter is renormalized
by the magnetic field. By the way, we take the oppor-
tunity of also studying, at very high magnetic field, the
renormalization of the first-nearest interchain hopping pa-
rameter t1 along the b direction. This paper is organized
as follows. In Section 2, we introduce the model for inter-
acting particles under a magnetic field. In Section 3, the
renormalization group equations for the hopping processes
are derived by means of a renormalization procedure with
three cut-off parameters, the bandwidth E0, the crossover
temperature T ∗

1 and the magnetic field energy ωc = vF G.
The results are discussed in Section 4. Finally we conclude
our work in Section 5.

2 The model

We consider a system of an infinite number of chains
weakly coupled via interchain one-particle hopping pro-
cesses t1 and t2 respectively to the first and to the

second-nearest neighbors along the b direction. The in-
trachain one-particle dispersion is linearized at the Fermi
points ±kF with the Fermi velocity vF (−vF ) for the
right-moving (left-moving) electron. The dispersion rela-
tion reads then as:

ε(�k) = vF (|k| − kF ) − 2t1 cos k⊥b − 2t2 cos 2k⊥b

k is the longitudinal momentum whereas k⊥ is the trans-
verse momentum along the b direction. We will neglect
the inter-plane hopping along the c axis since the elec-
tron motion along this axis is not affected by a transverse
magnetic field.

Within the g-ology model [7], the intrachain interac-
tions consist of backward scattering g1, forward scatter-
ing g2 and umklapp scattering g3, which is due to the
dimerization along the TM’s chains. The gi (i = 1, 2, 3)
constants are dimensionless and are expressed in units of
πvF .

Weakly coupled chains have been extensively studied
in terms of weak coupling Renormalization Group (RG)
approach [8–13]. Bourbonnais et al. [9,13,14] argued that
the electron-electron interactions renormalize the effec-
tive interchain hopping t∗1, which can be much smaller
than the bare single particle interchain hopping t1. On
the other hand, it has been stressed that umklapp scat-
tering strongly suppresses the t1 process, which becomes
irrelevant, inducing a deconfinement to confinement tran-
sition [10,12].

Here we focus on the case where the interchain hop-
ping parameter t1 is relevant and the electron motion is
deconfined, since we are interested in the behavior of the
t2 process under a magnetic field. Such behavior should be
studied in the deconfined 2D regime below the crossover
temperature T ∗

1 as t2 is a two-dimensional characteristic
energy.

The methodology used in this paper is based on the
perturbative renormalization group approach (PRG), as
discussed by Bourbonnais et al. [8,9,13], which we gener-
alize to take into account the presence of three cut-off’s.
It is worth noting that the PRG method with two cut-off
parameters has been used in the case of one-dimensional
electron system [15–18] and spin ladder materials [19].
The PRG approach has been modified to take care of the
second energy scale involved in the problem, besides the
bandwidth energy E0.

Under a magnetic field �H = (0, 0, H) applied along the
least conducting direction c, and in the Landau gauge �A =
(0, Hx, 0), the interchain hopping Hamiltonian is given by:

H⊥ = −t1
∑

〈l,l′〉

∫
dx exp

[
ie

∫ x,l′d

x,ld

�A(�s) · d�s

]

× ψ+(x, l) ψ(x, l′)

− t2
∑

〈〈l,l′〉〉

∫
dx exp

[
ie

∫ x,l′d

x,ld

�A(�s) · d�s

]

× ψ+(x, l) ψ(x, l′)
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where ψ(x, l) (ψ+(x, l)) is the annihilation (creation) op-
erator of a particle on the lth chain and x is the coordinate
along the chain direction. 〈l, l′〉 (〈〈l, l′〉〉) denotes the first
(the second)-nearest neighbors.

Given our gauge choice, H⊥ takes the form:

H⊥ = −t1
∑

〈l,l′〉

∫
dx exp [iGx(l′ − l)] ψ+(x, l) ψ(x, l′)

− t2
∑

〈〈l,l′〉〉

∫
dx exp [iGx(l′ − l)]ψ+(x, l) ψ(x, l′).

At this stage, it is useful to introduce the mixed rep-
resentation by taking the Fourier transform with respect
to x [5]. H⊥ is then written as:

H⊥ = − t1
∑

〈l,l′〉,k
ψ+(k, l) ψ(k + G(l′ − l), l′)

− t2
∑

〈〈l,l′〉〉,k
ψ+(k, l) ψ(k + G(l′ − l), l′). (1)

The coupling between the magnetic wave vector �G =
(G, 0, 0) and the longitudinal momentum k expresses the
orbital effect of the field.

Since t2 is of the order of t1/10 ∼ 10 K, a magnetic field
of 10 T–30 T is sufficient to bypass the effect of this hop-
ping process. Such field values correspond to the domain
where the FISDW phases of Bechgaard salts are formed.

3 Renormalization group formulation

The nature of the metallic 2D phase in the temperature
range from 10 to 100 K is still an open question. Devi-
ations from Fermi liquid behavior are clearly present in
this regime although the compounds are not in a one-
dimensional state [1,2]. Therefore, the influence of the
high temperature 1D regime turns out to be crucial for
the physical properties of the 2D phase. The 1D effects
should be taken into account to investigate the low tem-
perature metallic state.

Within the PRG, the history of the system in the 1D
regime is conserved while it is relegated in mean filed the-
ories.

On the other hand, in the 1D phase, the response
function in either the Cooper or the Peierls channel gives
logarithmic divergences at all orders of the perturbative
expansion of the scattering amplitudes. To handle these
divergences, the PRG is an appropriate approach within
which it is possible to sum up divergences of the pertur-
bative series.

Within the PRG, the temperature is parametrized as
T (l) = E0e−l where l is the scaling parameter and E0 is
the bandwidth cutoff, which is of the order of the Fermi
energy. During the scaling procedure, one moves from the
high-temperature scales corresponding to the 1D regime,
to the low-temperature scales where interchain hopping
processes are deconfined.

3.1 Renormalization group equations
for the two-particle scattering processes

In the 1D regime where T > T ∗
1 , the scaling equations of

the intrachain scatterings in a two-loop approximation are
given by [9]:

dg1

dl
= −g2

1 − 1
2
g3
1

d (2g2 − g1)
dl

= g2
3

[
1 − 1

2
(2g2 − g1)

]

dg3

dl
= g3 (2g2 − g1)

[
1 − 1

4
(2g2 − g1)

]
− 1

4
g3
3.

(2)

It is worth to note that one may take into account,
when deriving the RG equations of the gi couplings, the
effects of the dimensionality and those of the magnetic
field. This is possible by including the transverse hopping
terms in the determination of the corrections to the scaled
coupling constants. Then, the first and the second terms
in the r.h.s of the scaling equations in equation (2) have to
be multiplied by dimensional crossover functions [20,21].
However, these effects are not relevant in the 1D regime
since ωc � T ∗

1 . It should be stressed that the dimen-
sional crossover functions may play an important role in
the study of transient regime, due to thermal fluctuations,
in the neighborhood of T ∗

1 [22]. We will not discuss further
this effect, which is not the scope of our present work.

Below T ∗
1 , in the 2D regime, nesting properties become

relevant. The corrections to the two-particle vertices cor-
responding to the gi (i = 1−3) constants will then depend
on the geometry of the Fermi surface (i.e. t1 and t2) and
on the magnetic field. At one-loop level these corrections
are simple to derive [20]. However, the two-loop level is
more complicated and the corrections, which are not ana-
lytical, may be derived numerically. Since the main contri-
bution to the scaling equations comes from the one-loop
corrections [22], we will restrict our calculations, in the
2D regime, to the one-loop level. This will enable us to
obtain the essential behavior of the renormalized param-
eters while handling analytical expressions. It should be
noted that at the one loop level, the renormalization of
the hopping parameters is, as we will show, independent
of the gi couplings. The scaling equations of the latter in
the 2D regime, which we do not recall here, depend on a
dimensional crossover function [20].

3.2 Renormalization group equations
for the one-particle hopping processes

The diagrammatic representation, at the two-loop level,
of the scaling equations of t1 and t2 are given in Figure 2.

In the 1D regime, we found that the corrections to the
scaled hopping process tm (m = 1, 2) diverge as ln[(ω −
δ m ωc)/E0] where δ = ±1. This logarithmic correction
may be split in two terms [19]:

ln
(

ω − m δ ωc

E0

)
= ln

(
ωc

E0

)
+ ln

(
ω

ωc
− m δ

)
. (3)
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Fig. 2. Diagrammatic representation of the scaling equation
of the one particle hopping processes tm, (m = 1, 2), denoted
by a zigzag line. Black circle represents intrachain two particle
scattering whereas the solid (broken) line corresponds to the
right (left)-moving electrons. The i label is the chain index.

Since ωc � E0, the problem gives rise to two loga-
rithmic singularities, one in ln(ω) (in the case of the two-
particle sacttering) and the other in ln(ωc). As shown in
reference [19], a double renormalization procedure with
two cutoff parameters, E0 and ωc should be carried out.

The first step of the RG procedure corresponds to the
logarithmic problem in ωc/E0 while ω/ωc is kept constant.
The scaling parameter ωc/E0 scales from 1 to its physical
value. This renormalization step may be regarded as a
field renormalization.

The scaling equation of the dimensionless hopping am-
plitude t̃m(l) ≡ tm(l)/E0 (m = 1, 2) is given by [9]:

d ln t̃m(l)
dl

= 1 − 1
4

(
g2
1 + g2

2 − g1g2 +
1
2
g2
3

)
. (4)

The renormalization cutoff is E(l) = E0e−l where
l = 0, ..., lmax1 and lmax1 = − ln [max (T, T ∗

1 , ωc) /E0].
lmax1 may correspond to the thermal fluctuations (T ),
the 1D–2D dimensional crossover temperature (T ∗

1 ) or the
magnetic energy (ωc).

At T ∗
1 , t̃1(l) reaches unity at the scaling parameter l∗1

defined by: t̃1(l∗) = 1 [10]. Since the scaling parameter is
identified with the temperature as l = ln E0/T [9,10], the
crossover temperature T ∗

1 is then given by:

T ∗
1 = E0e−l∗1 .

For l > l∗1 , the scaling of t1 becomes meaningless since
t1 cannot be regarded as a perturbation. At l∗1, the one
particle hopping t1 becomes coherent and the system un-
dergoes a crossover to a two-dimensional phase [10,12].

A point worth stressing here is that the energy value
T ∗

1 at which the dimensional crossover takes place is still
an open question [2]. The estimate of T ∗

1 of ∼100 K from
transport experiments [23] disagrees with that deduced
from early interpretations of NMR measurements [14]. In
the following we will take t1 ∼200 K which gives rise to
T ∗

1 ∼ 150 K within the PRG approach. It should be noted
that, although the value of T ∗

1 is controversial, there is a
consensus on the bare value of t1.

The magnitude of the magnetic field used in experi-
ments does not exceed 30 T. The magnetic energy ωc is
then lower than T ∗

1 . Therefore, the first step of the renor-
malization procedure should be stopped at l∗1 where the
cutoff E0 is scaled to T ∗

1 .
A second step, which is also a field renormalization,

should be carried out in the two dimensional regime (T <

T ∗
1 ). As we have noted before, the scaling of t1 is stopped

whereas the scaling equation of t2 reduces, at the one loop
level, to [9]:

d ln t̃2(l)
dl

= 1. (5)

The cutoff is parametrized, in this case, as E(l) = T ∗
1 e−l

where l = 0, ..., lmax2 and lmax2 = − ln [max (T, ωc) /T ∗
1 ].

According to equation (5), the scaling of t2 is indepen-
dent of the coupling constants. In the 2D regime, and at
the one loop level, one may, therefore, focus only on the
renormalization of t2.

The bare value of t̃2 in the second step of the renor-
malization procedure is the renormalized value at l∗1 of the
first step, i.e.: [

t̃2(0)
]
2

=
[
t̃2(l∗1)

]
1

where the labels 1 and 2 correspond, respectively, to the
first and to the second renormalization step procedure. To
study the effect of the hopping parameter t2 on the nesting
properties of the Bechgaard salts, one may be interested
in the low temperature regime (T < ωc). The second step
of the scaling procedure should then be stopped at lc de-
fined as:

E(lc) ≡ T ∗
1 e−lc = ωc

At this point, a third step of the renormalization proce-
dure starts, where the scaling parameter ω/ωc is varied
from 1 to T/ωc keeping ωc/T ∗

1 constant. This step may be
called a frequency renormalization.

Since the correction to the renormalized t2 (Fig. 2) is
proportional to ln (ω/ωc − 2δ), which is not divergent, the
scaling equation of t2 reduces then, in this step, to [19]:

d ln t̃2(l)
dl

= 1. (6)

The scaling energy reads as E(l) = ωce−l where l =
0, ..., lmax3 and lmax3 = ln [max (T, T ∗

2 /ωc)]. T ∗
2 is a sort

of a crossover temperature given by:

T ∗
2 = ωce−l∗2

where l∗2 is specified as:

t̃2(l∗2) = 1.

At T ∗
2 the one particle hopping to the second nearest

neighbors t2 becomes coherent.
The initial condition of the third step of the scaling

procedure is given by:

[
t̃2(0)

]
3

=

[
t̃2(lc)

]
2
× T ∗

2 (H = 0)
ωc

T ∗
2 (H = 0) is the value of T ∗

2 at zero field. The different
steps of the t2 renormalization are summarized in Figure 3.

It is worth noting that to overcome the effect of the
hopping parameter t1, a magnetic field of ∼100 T is neces-
sary to fulfill the condition ωc > T ∗

1 . The renormalization
of t1 will hence consist in a two step-procedure within
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Fig. 3. Three-step renormalization procedure of the t2 hopping
parameter. The cutoff parameters are E0, T ∗

1 and ωc. E(l) is
the scaling energy.

the 1D regime. The first one is carried out in the domain
[ωc, E0] where the scaling parameter is ωc/E0 whereas the
second one deals with the domain T < ωc with ω/ωc as a
scaling parameter.

The scaling equation of t1 in the first step of the renor-
malization procedure is given by equation (4). The bare
value of t1 in the second step is given by:

[
t̃1(0)

]
2

=

[
t̃1(lc)

]
1
× T ∗

1 (H = 0)
ωc

where T ∗
1 (H = 0) is the 1D-2D crossover temperature

at zero field and lc is defined as lc = ln E0/ωc. As we
have discussed in the case of the t2 parameter, the scaling
equation of t1 during the frequency renormalization step
(second step) is reduced to:

d ln t̃1(l)
dl

= 1. (7)

This second step is stopped at l∗H defined by:

t̃1(l∗H) = 1.

The renormalized 1D-2D crossover temperature T ∗
1 (H) in

the presence of the magnetic field is then written as:

T ∗
1 (H) = ωce−l∗H .

One should expect, as in the one-dimensionalization pic-
ture, a decrease of T ∗

1 (H) due to the enhancement of
the 1D character with increasing magnetic field. The 1D
regime will therefore expand at the expense of the 2D
regime.

Since we are interested in the confinement effect of the
magnetic field, we will, therefore, focus on the relevant
parameters T ∗

1 and T ∗
2 at which the hopping processes

t1 and t2 become coherent. The effective hopping value
of t1 and t2, which could not be derived directly from
the present PRG approach, may be determined from T ∗

1

and T ∗
2 [9].

4 Results and discussion

We have considered, as in reference [10], that the intra-
chain scattering strengths depend not only on the on-site
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Fig. 4. Field renormalization of T ∗
2 . H∗

2 is the critical field
under which the hopping process t2 is unaffected by the mag-
netic field. The inset shows the renormalization of T ∗

2 in the
high field regime (solid line) for ωc > T ∗

1 . The meaning of H∗
1

is given in Figure 5.

coulomb repulsion but also on the nearest-neighbors one.
For the first step of the renormalization procedure, we take
as initial condition at l = 0 [10]:

πvF g1(0) = πvF g3(0) = 0.2 and πvF g2(0) = 0.6

The bare values of the hopping processes are t1(0) =250 K
and t2(0) =25 K, which are consistent with the experi-
mental values. The magnetic energy is given as ωc/H =
1.8 K/T [24], whereas the bandwidth is taken as E0 =
3000 K.

Let us consider the case where ωc � T ∗
1 . Carrying

out the first renormalization step procedure, t̃1(l) reaches
unity at T ∗

1 = E0e−l∗1 =143 K. During the second step of
the scaling procedure, one may meet two situations:
(a) At ωc < E(l) < T ∗

1 , t̃2(l) reaches unity at l∗2 , which
is the same as that obtained at zero field. The t2 hopping
process is then not affected by the magnetic field and its
scaling should be stopped at this stage.
(b) At ωc < E(l) < T ∗

1 , t̃2(l) is smaller than unity. In this
case, the third step of the renormalization should be car-
ried out for T < E(l) < ωc. This step will be stopped when
t̃2(l) reaches unity, which determine the temperature T ∗

2 .
At zero field, t̃2(l) attains an order of unity around

the crossover temperature T ∗
2 =14 K. The ratio T ∗

1 /T ∗
2 =

t1(0)/t2(0) =10 is equal to that of the effective hopping
parameters t1 and t2 obtained experimentally.

Carrying out the different steps of the renormaliza-
tion procedure in the presence of a transverse magnetic
field, we have obtained the dependence of the crossover
temperature T ∗

2 on the magnetic field H as depicted in
Figure 4. The latter shows that below a critical value H∗

2 ,
T ∗

2 is field independent. The critical value H∗
2 corresponds

to the limit value ωc (H∗
2 ) = T ∗

2 (H = 0) below which the
magnetic field cannot bypass the hopping process t2. The
experimental value of t2, and therefore its bare value t2(0)
(and, of course t1(0)) is strongly dependent on the applied
pressure. Since it considerably increases with pressure, we
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Fig. 5. Field renormalization of T ∗
1 . H∗

1 is the critical field un-
der which the hopping process t1 is unaffected by the magnetic
field.

can conclude that H∗
2 also increases with increasing pres-

sure. Therefore, the unidimensionalization effect will re-
quire, as expected, an increasing magnitude of the applied
field as the pressure increases. For H > H∗

2 , T ∗
2 decreases

with increasing field as a power law. At H =30 T, T ∗
2 is

reduced by a factor of 4 and for the high field regime T ∗
2

tends to a limit of ∼1 K. The effective parameter t2 is then
reduced as the field increases and the nesting properties
are improved.

Let us now focus on the case where ωc > T ∗
1 . The first

step of the renormalization procedure will be stopped at
lc = lnE0/ωc where t̃1(lc) < 1. To determine the renor-
malized T ∗

1 , a second step should be carried out.
At a scaling parameter l∗H , t̃1(l) reaches unity and the

system undergoes a dimensional crossover at T ∗
1 = ωce−l∗H .

The filed dependence of this crossover temperature is
shown in Figure 5.

Figure 5 shows that T ∗
1 is considerably reduced for

H > H∗
1 at which ωc = T ∗

1 (H = 0). The effective
dimensionality of the system is then decreased towards
the 1D case. This effect may be called a magnetic-
field-induced Luttinger liquid by analogy with the the
so-called magnetic-field-induced Luttinger insulator [24].
The 1D regime will expand at the expense of the 2D
phase, which enhances the anisotropy of the system.
Such behavior may be observed in the transport mea-
surements. In reference [25] an experimental evidence
for a magnetic field induced one-dimensionalization ef-
fect has been provided based on magnetoresistance mea-
surements in (TMTSF)2PF6. However, in reference [26],
the authors reported, from a magnetoresistance study,
that the anisotropy of the system is field independent, on
the contrary to other experimental and theoretical stud-
ies [24,25,27]. The origin of this controversy may lie in the
pressure regime at which were carried out the measure-
ments. In reference [25], the experiments were done above
the critical pressure Pc at which the SDW phase (phase
AF in Fig. 1) collapses, namely in the metallic regime.
Nevertheless, in reference [26], the magnetoresistance is
studied under a pressure P < Pc, corresponding to the
ordered SDW state. In this latter, and unlike the metallic
regime, it may be more difficult to study the competition

between the filed confinement effect and the interchain
hopping process due to the presence of strong AF corre-
lations.

We should note that the critical field H∗
1 is high com-

pared to the experimental values [25]. Within the present
PRG approach we are not able to seek the field renormal-
ization of t1 in the 2D regime, since in this regime, the per-
turbative approach is no longer valid. However, the t1 hop-
ping process may be confined in the 2D phase, for H < H∗

1

as it is expected within the one-dimensionalization sce-
nario [24,25,27,28].

To derive the field renormalization of t2 for ωc > T ∗
1 ,

one should carry out a third scaling step in the 2D regime
with the initial condition:

[
t̃2(0)

]
3

=
[
t̃2(l∗H)

]
2
.

The scaling equation is still given by equation (6). This
renormalization procedure will be stopped at the scaling
parameter at which t̃2(l) reaches unity. The inset of Fig-
ure 4 shows that the T ∗

2 line extends in the high field
regime (H > H∗

1 ) (solid line) and continues to decrease
smoothly. Therefore, the 1D renormalization procedure
(for ωc > T ∗

1 ) (solid line in the inset of Fig. 4) and the
2D one (for ωc < T ∗

1 ) (dashed line in the inset of Fig. 4)
are complementary and coherent.

We now discuss qualitatively the effect of the field
renormalization of the imperfect nesting parameter t2 on
the temperature-field phase diagram of the Bechgaard
salts. The field renormalization of t2 should be taken into
account when deriving, within the QNM, the transition
temperatures of the FISDW phases. The physics of the
QNM remains qualitatively valid, whereas the quantita-
tive behavior may be affected. The field reduced effec-
tive t2 may induce a shift of the FISDW cascade to lower
fields.

Within a subphase of a quantum number N �= 0, and
at a fixed field, the transition temperature is expected to
decrease as t2 decreases. Indeed, a decrease of t2 yields to
a decrease of the well known coefficients IN (N �= 0) [5],
which reduces the transition temperature. This behav-
ior is consistent with the dependence on pressure of the
transition temperature T c

N of the N �= 0 FISDW phases
obtained experimentally in the case of (TMTSF)2PF6

compound [27]. T c
N are found to decrease with decreas-

ing pressure, which is equivalent to a decreasing t2.
Concerning the N = 0 phase, as t2 is lowered, the I0

coefficient and then the transition temperature are raised,
which furthers the N = 0 phase. This feature is in agree-
ment with the increase of the metal-N = 0 phase transi-
tion temperature with decreasing pressure as found in the
experimental phase diagram of the (TMTSF)2PF6 [27].

5 Conclusion

In this paper, we have discussed the effect of a transverse
magnetic field on the (TM)2X systems. Using a pertur-
bative renormalization group (PRG) approach with three
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cut-off parameters, the bandwidth E0, the magnetic en-
ergy ωc and the 1D-2D crossover temperature T ∗

1 , we
found that the interchain hopping parameters t1 and t2
are renormalized by applying a magnetic field in the c
direction.

Above a critical field H∗
1 , the crossover temperature T ∗

1

is strongly reduced with increasing field, which decreases
the effective dimensionality of the system towards the
1D state. This result is in agreement with the one-
dimensionalization picture and with recent experimental
studies.

In the 2D phase, we have shown that for H > H∗
2 ,

the crossover temperature T ∗
2 , at which the t2 process be-

comes coherent, decreases as the field increases, which im-
prove the nesting properties. We have argued that the field
renormalization of t2 should be taken into account when
deriving the high field part of the FISDW cascade (i.e. for
H > H∗

2 ) in quasi-one dimensional organic conductors.

We are grateful to C. Bourbonnais, V.M. Yakovenko, and N.
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thank the Laboratoire de Physique des Solides à Orsay for
kind hospitality.
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